Robust Estimation of Shape Constrained State Price Density Surfaces

نویسنده

  • Markus Ludwig
چکیده

In order to better capture empirical phenomena, research on option price and implied volatility modeling increasingly advocates the use of nonparametric methods over simple functional forms. This, however, comes at a price, since they require dense observations to yield sensible results. Calibration is therefore typically performed using aggregate data. Ironically, the use of time-series data in turn limits the accuracy with which current observations can be modeled. We propose a novel approach that enables the use of flexible functional forms using daily data alone. The resulting estimators yield excellent fits and generalize well beyond available data, all the while respecting theory imposed shape constraints. We demonstrate the numerical stability and the pricing performance of our method by approximating arbitrage-free implied volatility, price and state price density surfaces from S&P 500 options over a period of 12 years.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Robust Estimation in Linear Regression Model: the Density Power Divergence Approach

The minimum density power divergence method provides a robust estimate in the face of a situation where the dataset includes a number of outlier data. In this study, we introduce and use a robust minimum density power divergence estimator to estimate the parameters of the linear regression model and then with some numerical examples of linear regression model, we show the robustness of this est...

متن کامل

Direct Nonparametric Estimation of State Price Density with Regularized Mixture

We consider the state price densities that are implicit in financial asset prices. In the pricing of an option, the state price density is proportional to the second derivative of the option pricing function and this relationship together with no arbitrage principle imposes restrictions on the pricing function such as monotonicity and convexity. Since the state price density is a proper density...

متن کامل

A Robust Knapsack Based Constrained Portfolio Optimization

Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...

متن کامل

Robust state estimation in power systems using pre-filtering measurement data

State estimation is the foundation of any control and decision making in power networks. The first requirement for a secure network is a precise and safe state estimator in order to make decisions based on accurate knowledge of the network status. This paper introduces a new estimator which is able to detect bad data with few calculations without need for repetitions and estimation residual cal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013